
ARMY RESEARCH LABORATORY
^^^P^W^W

Program Flow Graph Construction for
Static Analysis of Explicitly Parallel

Message-Passing Programs

by Dale R. Shires and Lori Pollock

ARL-TR-2370 November 2000

Approved for public release; distribution is unlimited.

20010220 083

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-2370 November 2000

Program Flow Graph Construction for
Static Analysis of Explicitly Parallel
Message-Passing Programs

Dale R. Shires
High Performance Computing Division, ARL

Lori Pollock
Computer and Information Sciences, University of Delaware

Approved for public release; distribution is unlimited.

Abstract

In recent years, message-passing parallel codes have rallied around using the message
passing interface (MPI). The parallelism in these codes is most often explicit; the
developer must instrument the source code with calls to an optimized communications
runtime library. MPI has been widely used for developing efficient and portable parallel
programs, in particular for distributed memory multiprocessors and workstation/personal
computer (PC) clusters, although its use in shared memory systems has been equally
effective. This report presents algorithm for building a program flow graph
representation of an MPI program. As an extension of the control flow graph
representation of sequential codes, this representation provides a basis for important
program analyses useful in software testing, debugging tools, and code optimization.

u

Acknowledgments

This research was performed while Dr. Pollock was on sabatical at the U.S. Army Re-

search Laboratory's High Performance Computing Division. The author wishes to acknowl-

edge the assistance given by Ms. Sara Sprenkle of Gettysburg College during the preparation

of this manuscript.

in

INTENTIONALLY LEFT BLANK.

IV

Table of Contents

Acknowledgments hi

List of Figures yü

List of Tables vii

1. Introduction 1

2. MPI Program Analysis 2

3. Characterization Study 3

4. MPI Program Flow Graph 5

5. Construction Algorithm 9

5.1 Basic Approach. . . 9

5.2 Extensions. . H

6. Current Directions 11

7. References 13

Distribution List 15

Report Documentation Page 17

INTENTIONALLY LEFT BLANK.

VI

List of Figures

1. An Example MPI-CFG 8

2. MPI-CFG Construction Algorithm 10

List of Tables

1. Characteristics of MPI Usage in Parallel Programs 4

vn

INTENTIONALLY LEFT BLANK.

vni

1. Introduction

The message passing interface (MPI) is a library for writing distributed memory parallel

programs that conform to a vendor-independent standard, thus enabling parallel programs

that are portable to many platforms [1]. A significant number of large applications have

been written in MPI, and it has been demonstrated that message passing programs written

in MPI can be both efficient and portable to various parallel environments and architectures.

However, MPI is often described as being analogous to assembly language programming due

to the low-level details required of the programmer. The step from a sequential code to a

correct, and not necessarily efficient, message passing parallel program is a challenging and

time-consuming one. Few sophisticated program analysis, testing, or debugging tools exist

to aid the programmer in this daunting task, as the design of these tools is complicated by

concurrency, nondeterministic execution, data distribution, and communication.

Optimization of message passing programs has focused on aggregating communication,

moving communication statements to hide communication latency by overlapping communi-

cation and computation, and reducing communication latency and unnecessary synchroniza-

tion. However, techniques such as data flow analysis, classic optimization, data flow testing,

and program slicing have not been addressed in the context of MPI programs.

Data flow analysis techniques for shared memory programs [2, 3], as well as data flow

and dependence analysis for concurrent Ada programs [4] and distributed applications (i.e.,

those not of the form single program-multiple data [SPMD] [5, 6]), have been developed.

Dynamic slicing methods for different models of concurrent programs have been developed

for distributed programs with Ada-type rendezvous communication [7, 8], synchronous mes-

sage passing distributed programs [9], and shared memory parallel programs [10]. Static

slicing methods for concurrent programs [5, 11, 12] have focused on shared memory parallel

programs with parallel sections and object-oriented features.

2. MPI Program Analysis

MPI programs present a different model of concurrent programming than these models.

MPI programs are written in the SPMD style, in which each process executes the same

program with unique data. Within these programs, special conditional statements based on

the unique process identifiers allow for selectively executing various code segments. Although

it is now possible in MPI-2 to create a multiple instruction-multiple data (MIMD) application

by using a dynamic task creation feature, it is preferable to create a static SPMD MPI

program, primarily for performance reasons. All processes are started as the program begins.

Each process has its own local memory address space; there are no shared global variables

among processes. All communication is performed through library calls to MPI routines.

This report describes efforts to develop a program representation for MPI programs that

will enable static program analysis for software testing, debugging, and compiler optimiza-

tion. All of these techniques require robust program understanding, achieved through good

intertask data flow analysis and data dependency analysis. Calls to communication libraries

in MPI explicity parallel code complicates all of these factors. However, these issues must

be addressed to achieve the most optimized code possible. For example, automatic dif-

ferentiation of functions containing message passing constructs is often less efficient than

hand-coded versions. By providing a representation that will allow the compiler to perform

a better analysis (dependence, control flow, data flow, etc.) in the presence of messages, the

performance gap should shrink substantially [13].

Developing this representation for MPI programs introduces several challenges. First,

the SPMD nature of the codes implies that the program representation for each process is

not necessarily distinct. Rather, processes execute the same program, with segments to be

executed by a subset of the processes designated by conditional statements. All processes

execute the code that resides outside of these special conditionals. This behavior needs to

be modeled correctly in the program representation and taken into account during static

program analysis. Second, programmers often exploit the rich set of collective communi-

cation routines in the MPI library, in addition to point-to-point communication. One way

of handling programs with collective communication is translating them into a sequence of

point-to-point communication calls for program analysis. However, one intended use of the

representation is to display information about the program flow to the programmer through

a graphical user interface (GUI); thus, the program representation should be presented to

the programmer in terms of the original MPI program. Additionally, collective communi-

cation, such as scatter and gather operations, involve different sections of an array being

partitioned or gathered to the various processes, respectively. It would be most useful to

have the data flow information reflect this sectioning of the array.

The remainder of this report presents the results of a characterization study of a set of

MPI programs that helped guide the design of these techniques, as well as an algorithm for

constructing an MPI program flow graph.

3. Characterization Study

While the goal is to build a suite of "real-world" codes, finding stable MPI production

codes is a common problem being addressed by consortiums and vendors. MPI usage was

statically analyzed in the Numerical Aerospace Simulation (NAS) Parallel Benchmark suite

and five other major codes listed in Table 1. The NAS codes include various kernel and ap-

plication MPI benchmarks. ST3D from Washington University is a numerical relativity code

that solves the full Einstein equations in three dimensions. CRUNCH3D from the Naval Re-

search Laboratory addresses dissipative, compressible magnetohydrodynamics using three-

dimensional (3-D) Fourier collocation. Znsflow from the U.S. Army Research Laboratory

(ARL) is a computational fluid dynamics code that solves the unsteady Reynolds averaged

Navier-Stokes equations and can be targeted to various projects of interest. OVERFLOW

and BATSRUS come from NASA. OVERFLOW computes numerical solutions of the com-

Code
Source
Lines

MPI
Calls

Total
Collective

Point-to-Point

Total
In Special
Branches

Trivially
Matched

NPB Block Tridiagonal
NPB Multigrid
NPB Scalar Pentadiagonal
NPB 3-D FFT
NPB LU Decomposition

5432
2438
4706
1946
5182

54
41
48
20
57

6
7
6
6

15

24
13
24

0
24

0
0
0
0

24

12
12
12
0
0

ST3D (Einstein) 15512 22 2 10 10 10
NRL CRUNCH3D 3207 48 11 6 6 6
ARL Znsflow 16744 58 17 19 0 19
NASA OVERFLOW 22017 457 40 374 «318 «318
NASA BATSRUS 16324 181 32 80 «40 «40

Table 1: Characteristics of MPI Usage in Parallel Programs

pressible Navier-Stokes equations by using a finite volume discretization in space and implicit

time steps. BATSRUS is a magnetohydrodynamics code used for applications such as solar

modeling. Some of the OVERFLOW and BATSRUS metrics are approximated based on a

small sample from the code. This was necessary due to the code complexity, size, and lack

of data flow analysis. A fully automated system with data flow analysis should provide more

accurate results.

Several concluding observations were possible after a cursory examination of these pro-

grams. In all of the codes except one, the number of source lines related to MPI communi-

cations is less than 2% of the total number of lines of code (in most cases it is far less than

2%). The "MPI Calls" column in Table 1 gives a count of all MPI calls found in the code.

The "Total Collective" column lists the number of MPI collective communications. Data

pertaining to MPI point-to-point communication was further broken down. The "Total"

column gives the number of sends and receives.

Special conditional statements (e.g., if [myrank == 0]) involving the process identifier

are present, but not common. These statements are usually indicative of manager-worker

style parallelism. The column "In Special Branches" shows the number of MPI sends and

receives found in these branches. Many of these codes work on grid-based data, which seems

to naturally favor a data parallel approach to parallelism. As message passing codes, however,

many of these programs rely upon initialization routines to compute arrays or scalars, such

as north, south, etc., to hold information about neighboring processes and domains. Source

and destination fields in the communication calls contain expressions using precomputed

arrays, scalars, constants, and in some cases, the process identifier. MPI wildcards, such as

MPI_ANY_TAG or MPI_ANY_SOURCE, are not common. Some codes use nested conditionals or

loop constructs to further refine execution paths and interprocess communication.

Ultimately, while these programming styles make flow graph construction more difficult,

they do not necessarily preclude it in most cases. Many of the scalars and arrays are defined

with some reference to a unique process identifier. A static backward slice and variable

substitution within the local process's flow graph can be used to reformulate these expressions

in terms of the process identifier. Constant folding used in source and destination fields would

also assist in the process.

Many point-to-point communication statements can be trivially matched. The number is

given in the "Trivially Matched" column in Table 1. In these cases, a simple analysis of the

communicator, type, and tag fields is enough to explicitly match communication statements.

4. MPI Program Flow Graph

Since each process in an MPI program has local space allocated for each of the declared

variables in the program, and communication occurs only through matching MPI communi-

cation calls, data flow local to a given process between communication points in that process

is not affected (as a side effect) by the data flow within other processes. The data flow

within a given process is only affected by other processes at communication points. In point-

to-point communication, a message sent by a particular send operation will be received by

another process only through a receive operation executed by the other process. Specifi-

cally, a message can be received by a particular receive operation only if (1) it is addressed

to the receiving process by the sender, (2) the send and receive have matching communi-

cator fields, (3) the sender field of the receive is either MPI_ANY_SOURCE, or it matches the

sender's process id, and (4) the tag fields of the send and receive match, or the tag field

of the receive is MPI_ANY_TAG. In collective communication, all processes in the designated

communicator are involved in the communication. Although multiple messages sent from

one process to another process are guaranteed to arrive in the order they were sent, there

are no assumptions made on the arrival order of messages from two different sources to the

same destination. When a message receive specifies MPI_ANY_SOURCE as the expected sender,

the originator of the message will be indeterminate at static analysis time; otherwise, the

expected sender is specified, and communication is deterministic. Such indeterminacy is

conservatively represented in this program representation.

A control flow graph (CFG) representation for a sequential program P is a directed

graph G = (N,E,S,e), where each node n € N represents a basic block of instructions,

each edge n ->• m e E represents a potential flow of control from node n to node m, and

there is a unique start node s and a unique exit node e. A path in G is a sequence of nodes

(nx,^, ...nk), where n{ -> ni+1 for all 1 < i < k. It is assumed that every path in the CFG

is a viable execution order of program P.

An MPI-CFG extends the CFG with communication edges and isolates each communica-

tion statement into its own separate basic block, represented by a single node in the graph.

These nodes are called communication nodes.

While point-to-point communication can be easily represented by a single communica-

tion edge, collective communications have distinct semantics that result in different data flow

across processes. For example, a broadcast will result in every process receiving the same

value and storing it into the same local variable, whereas a scatter will result in each process

receiving a subset of a set of values sent from the root process to distribute or partition the

data stored in a single array among the processes. The representations of these communi-

cation statements were developed with the goal that each communication statement should

have a unique representation that reflects its semantics.

Lastly, the control flow edges of the MPI-CFG are annotated with a value that reflects

static information about the number, and possibly the process identifiers (if available) of the

processes that could execute along that edge. The value will be one of the following four:

(1) < c >, indicating the known process id c of the only process that will execute that

edge,

(2) < single >, indicating that statically one can prove that only a single process will

execute this edge, but one cannot determine the process id,

(3) < unknown >, indicating that it could be one or more processes executing this edge,

or

(4) < multiple >, indicating that definitely more than one process will execute this code

if there is more than one executing process.

A predicate annotation (e.g., myproc < n) is also maintained if it is available and possible

to identify. This information allows the communication edge addition step and other static

program analyses to utilize the information about process ids.

Due to space constraints and the large size of most interesting MPI programs, it is

preferable to define a condensed MPI-CFG as an MPI-CFG in which the nodes representing

computation blocks between two communication nodes are collapsed into a single represen-

tative computation node. This structure is meant for presentation purposes only. Program

analysis is to be performed over the MPI-CFG, not the condensed MPI-CFG. The MPI-CFG

is illustrated in Figure 1. Figure 1(a) gives the code segment for an SPMD-style MPI pro-

gram segment that performs a "cascading" style of communication, with processor 0 sending

to 1, 1 to 2, etc. The MPI-CFG is shown in Figure 1(b). Control flow edges are indicated

if (myid.eq.O) then
call mpi_send(flag,l,MPLJNTEGER,i,tag,

MPI_COMM_WORLD,ierr)
end if
do np=l,nprocs-l

if (myid.eq.np) then
call mpi_recv(flag,l,MPIJ:NTEGER,np-l,

tag ,MPIJC0MM_W0RLD , status, ierr)
if (myid.ne.(nprocs-1)) then

call mpi_send(flag,l,MPI_INTEGER,
np+1, tag, MPI.COMM.WORLD, ierr)

endif
endif

enddo

(a) MPI Code Segment cascade.

Entry

\
i

1
— myid — 0]

flag. Send

.-
/ V

,' np= 1

" :
np<=nprocs-l

■

'. myid==np

\flag
■

\
Recv

/' flag 1

\flag\

myido
nprocs-1

Send

*
np = np + 1

'
2

1
Exit

(b) Corresponding MPI-CFG.

Figure 1: An Example MPI-CFG.

by solid lines, while communication edges are shown as dashed lines. Communication edges

are labeled with the variables that are involved in the interprocess communication. The

conditional < myid == 0 > is an example of a special conditional statement indicating that

the left branch is to be executed only by process 0, while the rest of the processes should

execute the right branch.

5. Construction Algorithm

5.1 Basic Approach. The MPI-CFG construction algorithm is summarized in Figure 2.

The first step is to create the underlying CFG by using a slight modification to the usual al-

gorithm for CFG construction, which isolates communication statements as separate nodes.

Each process's CFG is represented by some subgraph of this graph, where different pro-

cesses typically have subgraphs that overlap one another. An initial pass of edge annotation,

based on the relational operator of the special conditionals, will indicate program segments

that are executed by one process vs. possibly multiple processes. Many parallel program-

mers program in the manager-worker style of programming, where the special conditionals

if [myrank == 0] will often be an equality test against a constant. This information is used

in the constant propagation phase. Traditional constant propagation can be applied to CFG

representation of an SPMD program; however, it will be overly conservative in handling con-

stants at join points from branches taken by different processes. More sophisticated constant

propagation that recognizes constants with respect to particular processes would result in

more precise information per process. Propagating constants helps to eliminate symbolic in-

formation in the parameters of communication statements, as well as the information known

about the expressions in special conditionals.

The last step is to conservatively add communication edges. Because the same code

segment may represent multiple processes, it is possible for a communication that occurs at

runtime to have no associated communication edges, only a communication node. Communi-

cation edges are added according to the kind of communication, variables in particular fields

of the communication call, any statically determined information about constants and the

annotations on control flow edges, and the matching rules for communication statements.

Sometimes the communication is ambiguous because of unknown values for variables, or

wildcards in the source or tag fields. In these situations, an edge is added for any potential

matching communication. In the MPI programs examined, there are very few communica-

Algorithm: MPI-CFG Construction.
Input: MPI program P.

Output: MPI-CFG representation of P.

begin

Treating MPI calls as regular function calls,

Construct the CFG representation P-CFG of P;

Using the parameter of MPI_Comm_rank,
Identify special conditionals that

indicate separate process control flow;
Perform initial annotation of edges based on

the expression operator in special

conditionals;

Using annotations, perform modified constant

propagation over P-CFG;

Perform final annotation of edges using new

information at special conditionals;

At each MPI communication statement,

Use constants, CFG slices and MPI matching

rules to identify potential matching
communication;

Conservatively add communication edges to
P-CFG;

end.

Figure 2: MPI-CFG Construction Algorithm.

tions that would cause additional edges to be added due to lack of information at analysis

time.

The most challenging aspect of finding the potentially matching communication state-

ments is identifying the source and destination processes. The source and destination fields

of communication statements can be categorized as being (1) a constant, (2) an expression

involving the process identifier, or (3) an expression not containing the process identifier.

First, a traditional backward CFG slicing is performed (without communication edges) to

reformulate expressions that are derived from the process identifier, but do not explicitly

contain the process identifier. Then, in cases (1) and (3), the annotations on MPI-CFG

edges are used to refine the set of potentially matching communications. In case (2), vari-

able substitution is used in the expression functions of these fields to determine whether the

10

source and destination expressions of the receive and send operations, respectively, can be

equal.

5.2 Extensions. Several enhanced control flow and data flow techniques are being consid-

ered. For example, several codes that were analyzed employ a programming style in which

many mpi_isend statements are explicitly written. However, there is only one matching

mpi_irecv statement, which is located in a function. This function is called repeatedly with

the required parameters to match-the various sends. Interprocedural analysis, or simply

function inlining, will provide more information for static analysis.

Furthermore, approaches that may assist in providing more precise information for loop-

nested communications are being investigated. Loop peeling, a technique useful in scalar

replacement memory hierarchy optimizations, may prove beneficial [14]. The basic approach

is to "peel" k iterations from the beginning of a loop and replace them with copies of the

body and the associated increment and test code for the loop index. Where there are loop-

nested communications in which the tag or source and destination fields are based on the

loop index variable(s), peeling can be useful in restructuring the MPI-CFG to allow for better

edge annotations. This technique should also be useful in removing communications edges

that point into a loop body, thus simplifying the static slice.

6. Current Directions

The process of program flow graph construction is curently being implemented within

the Stanford University Intermediate Format (SUIF) compiler infrastructure [15]. More

precise constant propagation analysis is also being investigated. Studying various existing

MPI codes revealed the need for a more robust constant folding technique. This should

provide for better point-to-point communication matching and should allow for removing

communication edges that are currently required to be conservative. Of particular interest is

11

the extension of the program dependence graph (PDG) representation for SPMD programs.

The program dependence graph is a representation that succinctly represents both control

and data flow in a program.

12

7. References

[1] Message Passing Interface Forum. "MPI: A Message-Passing Interface Standard." In-

ternational Journal of Supercomputer Applications, vol. 8, no. 3-4, 1994.

[2] Grunwald, D., and H. Srinivasan. "Data Flow Equations for Explicitly Parallel Pro-

grams." Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pp. 159-168, 1993.

[3] Grunwald, D., and H. Srinivasan. "Efficient Computation of Precedence Information

in Parallel Programs." Languages and Compilers for Parallel Computing, pp. 502-616.

Springer-Verlag, 1993.

[4] Long,. D., and L. A. Clarke. "Data Flow Analysis of Concurrent Systems That Use the

Rendezvous Model of Synchronization." Proceedings of the 4th Symposium on Testing,

Analysis, and Verification, pp. 21-35, 1991.

[5] Cheng, J. "Dependence Analysis of Parallel and Distributed Programs and Its Appli-

cations." IEEE-CS International Conference on Advances in Parallel and Distributed

Computing, 1997.

[6] Cheung, S. C, and J. Kramer. "Tractable Dataflow Analysis for Distributed Systems."

IEEE Transactions on Soßware Engineering, vol. 20, no. 8, pp. 579-593, August 1994.

[7] Korel, B., and R. Ferguson. "Dynamic Slicing of Distributed Programs." Applied

Mathematics and Computer Science, 1992.

[8] Korel, B., and J. Laski. "Dynamic Program Slicing." Information Processing Letters,

vol. 29, pp. 155-163, October 1988.

[9] Duesterwald, E., R. Gupta, and M. L. Soffa. "Distributed Slicing and Partial Re-

execution for Distributed Programs." Languages and Compilers for Parallel Computing,

pp. 497-511, 1992.

13

[10] Choi, J.-D., B. Miller, and R. Netzer. "Technique for Debugging Parallel Programs

with Flowback Analysis." ACM Transactions on Programming Languages and Systems,

vol. 13, no. 4, pp. 491-530, October 1991.

[11] Zhao, J., J. Cheng, and K. Ushijima. "Static Slicing of Concurrent Object-Oriented Pro-

grams." Proceedings on IEEE-CS Twentieth Annual International Computer Soßware

and Applications Conference, pp. 312-320, 1996.

[12] Krinke, J. "Static Slicing of Threaded Programs." Proceedings of the ACM SIG-

PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,

pp. 35-42. Montreal, Canada, 1998.

[13] Hovland, P. D. "Automatic Differentiation of Parallel Programs." Ph.D. thesis, Uni-

versity of Illinois at Urbana-Champaign, 1997.

[14] Muchnick, S. Advanced Compiler Design and Implementation. CA: Morgan Kaufmann

Publishers, 1997.

[15] Stanford SUIF Compiler Group. The SUIF Parallelizing Compiler Guide. Stanford

University, 1994.

14

NO. OF
COPIES ORGANIZATION

DEFENSE TECHNICAL
INFORMATION CENTER
DTIC DDA
8725 JOHN J KINGMAN RD
STE0944
FT BELVOIR VA 22060-6218

HQDA
DAMOFDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

OSD
OUSD(A&T)/ODDDR&E(R)
RJTREW
THE PENTAGON
WASHINGTON DC 20301-7100

DPTYCGFORRDA
US ARMY MATERIEL CMD
AMCRDA
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

INST FOR ADVNCD TCHNLGY
THE UNTV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGRENRD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5100

NO. OF
COPIES

1

ORGANIZATION

DIRECTOR
US ARMY RESEARCH LAB
AMSRLD
DR SMITH
2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR
US ARMY RESEARCH LAB
AMSRLDD
2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AI R (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CILL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AP
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

DIRUSARL
AMSRL CI LP (BLDG 305)

US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
MADNMATH
MAJHUBER
THAYERHALL
WEST POINT NY 10996-1786

15

INTENTIONALLY LEFT BLANK.

16

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting bunten for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson
Davis Hiohwav Suite 1204 Arlington. VA mmjsm. and to the Office of Manaoement and Budoet. Paperwork Reduction Prolect(0704-0188l, Washington, DC 20503.

■Ü5—3—a. T ill i ■ ^^^^^^.^.-.^ - nrnAnrTunr «un HATCC rnuCDCH
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

November 2000

3. REPORT TYPE AND DATES COVERED

Final, May 1999 - September 2000
4. TITLE AND SUBTITLE

Program Flow Graph Construction for Static Analysis of Explicitly Parallel
Message-Passing Programs

6.AUTHOR(S)

Dale R. Shires and Lori Pollock*

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U. S. Army Research Laboratory
ATTN: AMSRL-CI-HA
Aberdeen Proving Ground, MD 21005-5069

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

BCH02

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2370

10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

* University of Delaware, Newark, DE 19716

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACTfAfax/mi/m 200 words)

In recent years, message-passing parallel codes have rallied around using the message passing interface (MPI). The
parallelism in these codes is most often explicit; the developer must instrument the source code with calls to an
optimized communications runtime library. MPI has been widely used for developing efficient and portable parallel
programs, in particular for distributed memory multiprocessors and workstation/personal computer (PC) clusters,
although its use in shared memory systems has been equally effective. This report presents an algorithm for building a
program flow graph representation of an MPI program. As an extension of the control flow graph representation of
sequential codes, this representation provides a basis for important program analyses useful in software testing,
debugging tools, and code optimization.

14. SUBJECT TERMS

MPI parallel programs, flow graph, optimization, program analysis, software tools

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

21
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 17

Standard Form 298 {Rev. 2-89)
Prescribed byANSIStd. 239-18 298-102

INTENTIONALLY LEFT BLANK.

18

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to
the items/questions below will aid us in our efforts.

1. ARL Report N..mW Author ARL-TR-2370 (Shires) Date of Report November 2000

2. Date Report Received :—

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be

used.) —

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate _ -

6. General Comments. What do you think should be changed to improve future reports? (mdicate changes to organization,

technical content, format, etc.) ; _—

Organization

CURRENT Name E-mail Name
ADDRESS .

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001 ,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL Cl HA
ABERDEEN PROVING GROUND MD 21005-5067

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

